
Goal   
Los Alamos National Laboratory’s Petascale Synthetic Visual Cognition 
project is exploring full-scale, real-time functional models of human visual 
cortex using the Roadrunner petaflop (1000 teraflop) supercomputer and 
future GPGPU-based exaflop (1000 petaflop) computers.  The project’s 
goal is to understand how human vision achieves its accuracy, robustness 
and speed.  Commercial-off-the-shelf hardware for this modeling is rapidly 
improving, e.g., a teraflop GPGPU card for a workstation now costs ~$500 
and is ~size of mouse cortex. We now present initial results demonstrating 
whole image classification using standard computer vision image data-
sets, and object extraction from UAV video using a model of primary visual 
cortex running on a GPGPU (240-core NVIDIA GeForce GTX285).   
As this technology continues to improve, cortical modeling on GPGPU 
devices has the potential to revolutionize computer vision. 
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GPGPU significantly accelerates visual cortex models 
We compare speed of a vectorized PANN model (using SSE intrinsics) running on a 2.6 GHz Intel core (Apple 
MacPro under OSX 10.5) versus model performance on a NVIDIA GTX285 240-core GPGPU card.  We compared 
outputs at each stage to verify agreement of calculations. We compared average performance over many frames of a 
640x480 pixel/frame video stream. As shown above, the retinal component of the model showed x100 speed-up. The 
S-cell module, which is the most computationally intensive part of the model, showed x10 speed-up.  The C-cell 
module showed x10 speed-up.  Host file i/o and round-trip communication time between host and device was a small 
fraction of frame processing time, and can be parallelized with frame processing.  Hence we conclude that GPGPU 
with CUDA enables significant visual cortex model speed-up without significant constraint on algorithm exploration. 

Scaling of image classification accuracy with size of dataset 
Neocognitron-type models have been demonstrated to achieve whole-scene classification accuracy 
comparable to human subjects under conditions of speed-of-sight psychophysics experiments [4].  Here 
we show results with simulated data sets of rendered models of cats versus dogs (using 3D models with 
the 3DMax rendering engine) [14].  Model accuracy improves linearly with the logarithm of the size of  
the training set.  Larger training sets require more computing resources to explore scaling properties. 
Hybrid systems with only one or a few GPGPUs enable large-scale, fast simulations of visual cortex, 
which has the potential to revolutionize research in this field. 

Model   
LANL’s Petascale Artificial Neural Network (PANN) [8] is a high performance C++, C, and Python 
implementation of a Neocognitron-type hierarchical model [2-5] of human visual cortex regions V1 
(primary visual cortex), V2, V4, and inferotemporal cortex (IT), the ventral pathway of visual processing 
(“what” pathway). PANN exploits conventional clusters of multi-core CPUs, or hybrid machines such as 
IBM Cell-accelerated clusters (Roadrunner architecture [6]), or GPGPU-accelerated clusters that are 
currently in development.  Pinto, Cox & DiCarlo [9,10] have recently shown high-throughput image and  
video processing with V1-like models using a multi-GPGPU machine.  

The key scientific question is how does visual cortex organize itself in response to large amounts of 
visual stimulus? PANN is designed to process large amounts of still and video imagery to match the 
~10^15 pixels/year taken in by the 6M cones of the human retina.  PANN processes this imagery using 
unsupervised learning algorithms to build a hierarchical representation of natural scenes, combined with 
a relatively small amount of supervised learning required to train a back-end classifier (e.g., linear kernel 
support vector machine (SVM) [11]).  The hierarchical representation of natural scenes is believed to be 
sparse, drawing from a redundant dictionary of scene elements (Olshausen & Field, [12]), which is 
driving development of a rich set of new ideas about pattern recognition. The speed achievable by 
running on clusters of GPGPU-accelerated compute nodes will enable testing of the properties of some 
of these learning rules at the full scale of human visual experience (~months of video). 

Functional Models of Visual Cortex.  Processing in the human visual system starts in the 
retina of the eye, continues in the lateral geniculate nucleus (LGN), and then reaches the cortex at 
region V1 (primary visual cortex), where the input is processed by layers of cortical neurons operating in 
a massively-parallel assembly of columns of feature-specific cells. Hubel and Wiesel’s model of V1 
consists of layered “simple” S-cells and “complex” C-cells [1]. Fukushima [2] and Poggio, et al., [3-5] 
have proposed hierarchical models of the ventral visual pathway (“what” pathway) comprised of visual 
cortical regions V1, V2, V4, supporting a model of whole object detection in inferotemporal cortex (IT). 
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Necessary computing hardware is available now.  LANL’s Roadrunner supercomputer 
reached a petaflop in 2009 [6], marking the arrival of computing platforms large enough and fast enough  
for full-scale, real-time functional modeling of human cortex [7]. However, small mammals are capable 
of excellent visual acuity and object recognition with brains orders of magnitude smaller than humans 
(11G cortical neurons in human vs 0.3G in cat v 0.004G in mouse). GPGPU technology could enable 
widespread use of large-scale, real-time models of mammalian visual cortex for a wide range of 
computer vision tasks.   
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Processing in S-cells 
Radial Basis Functions with standard  
oriented Gabor neuron weight vectors [3-5]. 
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Processing in C-cells  
MAX Function over S-cell receptive fields. 

Learning  
PANN uses Hebbian learning to set 
the features detected by neurons from  
large amounts of natural imagery.  

Hebb–Oha learning rule [13] : 

!w = " y r,w( ) r #w( )

Acknowledgements 
Work supported by Department of Energy (LDRD-DR-2009006), National Science Foundation  
(Award No. NSF-OCI-0749348), and DARPA/DSO Neovision2 program. LANL publication approved  
for unlimited release [LA-UR-10-05430]. 

Results   
We ported our PANN C++ code to NVIDIA GPGPU using CUDA to develop C++ host code and C 
device code.  The porting process was straight-forward and fast to complete.  The PANN code is 
optimized for ease of algorithm exploration, e.g., we use global device memory to store neuron columns 
of arbitrary complexity, and the port to GPU was designed to allow ease of validation of host versus 
GPU code.  We report significant speed-up without loss of accuracy on GPGPU, and have been able  
to develop our code on a range of machines, from simple 16-core GPUs in laptops (NVIDIA GeForce 
9600M GT), to 240-core GPUs in workstations (NVIDIA GeForce GTX285), to multi-GPU servers.  

Processing in Retina 
Local contrast equalization, for each patch set 
mean to zero and local Euclidean norm to 1.  

Vehicle Tracking in UAV-like Video 
We have preliminary results using a learned model of 
primary visual cortex on public-release UAV-like imagery of 
vehicle detection and tracking scenarios provided by the 
DARPA/DSO Neovision2 program.  We are currently 
working to explore and optimize the object-recognition 
capabilities of visual cortex models under different 
conditions of learning rule, initial network topology, and 
training set size.  Initial results suggest that visual cortex 
models such as PANN are a promising approach to this 
hard visual pattern recognition problem. GPGPU 
acceleration may be the key enabling technology for this 
type of application, as exploiting the GPGPU enables a 
better than order-of-magnitude speed-up of execution of 
the model on workstations, enabling learning of better 
models and faster execution of the final model. 
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